If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25z^2-100=0
a = 25; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·25·(-100)
Δ = 10000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10000}=100$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-100}{2*25}=\frac{-100}{50} =-2 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+100}{2*25}=\frac{100}{50} =2 $
| 7=3+5x+5 | | 1.66(12z-18)=2z-3 | | 5x-4x+2x=6 | | 7n+5=-9+5n | | 660=2(3.14*51)+2c | | 1.2x+2.0x=16 | | 14+12(0.25y-0.75)=65 | | 0=3(X-5)(2x+3 | | 6(x+1)+3=2x+17 | | -x/6-(-31)=64 | | 5x-1=x+10 | | 5x+3-2x=18-4x | | 72x^2+2x-35=0 | | 100=21.8+a | | 5(m+1)=7(m-1 | | 6x-1=-6x+11 | | 4x+1+2x+3=10x-20 | | 3/4x+2-5/4x=-6 | | 33=15w=3w-w+4w | | 4y^2+13y-12=0 | | 5x9=-3x-12+5x | | 39y+7y^2=18 | | 4/16x-261=1/x^2 | | 10/x=5/2x+45 | | -18u-18=-2u-12 | | 4(-4+x)=5x+1/4 | | 3x+5+5x-18=90 | | m-6=-11+2m | | 8b+28=-4+4b+12 | | √-8+6x=x | | (2/3)z=41/4 | | -7=2x=-45x |